

A project completed as part of the

requirements for the

B.Sc. (Hons) Computer Science

entitled

Web Application Security Principles

Designing Secure Web Based Enterprise Solutions

by

Johann REHBERGER

in the years 2002/2003

Web Application Security Principles Page 2 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

ABSTRACT

This project is a research about software development security principles in

web applications. Security vulnerabilities of web applications are researched and

discussed in detail. The work examines existing security principles for application

development and recommendations for implementing the researched principles in

web applications are given. In addition an investigation on the design elements of

enterprise web applications is made and the core components of web

applications are defined.

For demonstration purposes a web application has been implemented to

show how a web application that is vulnerable to researched issues looks like.

This report gives detailed information how the code should be implemented to

prevent those vulnerabilities. The web application can be found on the attached

compact disc.

The project comes to the conclusion that “Input Validation” is the most

important security principle for web applications. By applying this principle most

vulnerabilities can be prevented.

Web Application Security Principles Page 3 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

ACKNOWLEDGMENTS

I would like to thank Mr. Dipl.-Ing. Johann Preissl for his guidance and

assistance as supervisor for this Final Year Project. In addition I would like to

thank Ms. Dipl.-Ing. Dr. Elke Stangl for her advisories and contributions to this

Final Year Project.

During the research of this project I had the chance to read a lot of

interesting and exciting material from different authors that help me to see things

in different ways. Therefore I would like to thank those people.

Last but not least I would like to say thank you to Maria, Leopold, Hubert,

Rita and last but not least Andreas. L. Zeiner who supported me to make this

project reality.

Web Application Security Principles Page 4 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

TABLE OF CONTENTS

ABSTRACT .. 2

ACKNOWLEDGMENTS ... 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 8

LIST OF TABLES ... 8

1 INTRODUCTION .. 9

1.1 Generally ... 9

1.2 Aims of the report .. 11

1.3 Aims of the sample code ... 11

1.4 Approach ... 12

2 SOFTWARE SECURITY .. 14

2.1 What is security? ... 14

2.2 Security Threats .. 20

3 SECURITY VULNERABILITIES ... 23

3.1 Vulnerability defined .. 23

3.2 Buffer Overflow ... 24

3.3 Code Injections ... 30

3.3.1 SQL Injection ... 30

Web Application Security Principles Page 5 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

3.4 Cross Site Scripting... 36

3.5 URL Traversal ... 41

4 SECURITY VERSUS USABILITY .. 44

4.1 Generally ... 44

4.2 Server ... 45

4.3 Client ... 48

5 PRINCIPLES OF SECURE DEVELOPMENT 50

5.1 Generally ... 50

5.2 Existing Principles ... 51

5.2.1 Validate Input ... 54

5.2.2 Validate Output .. 56

5.2.3 Fail Securely .. 59

5.2.4 Keep it simple .. 59

5.2.5 Use and Reuse Trusted Components / Use your community

resources 60

5.2.6 Practice Defence in Depth ... 61

5.2.7 Secure the weakest link ... 62

5.2.8 Security by Obscurity, Transparency, Ease of Use 62

5.2.9 Principle of Least Privilege ... 63

5.2.10 Compartmentalization, Segmentation 64

5.2.11 Promote privacy / Reduce surface area 65

Web Application Security Principles Page 6 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.12 Remember that hiding secrets is hard 65

5.2.13 Be reluctant to trust .. 66

5.2.14 Use secure defaults .. 67

5.2.15 Check at the gate ... 67

5.2.16 Assume external systems are insecure 68

5.2.17 If you don’t use it, disable it .. 69

6 ELEMENTS OF A SECURE DESIGN .. 70

6.1 Web Based Enterprise Solutions .. 70

6.2 Authentication ... 71

6.2.1 Anonymous Access ... 71

6.2.2 HTTP Basic Authentication [RFC 2617] 72

6.2.3 HTTP Digest Authentication [RFC 2617] 72

6.2.4 Forms Authentication ... 73

6.2.5 Integrated Windows authentication .. 73

6.2.6 Digital Certificates .. 75

6.3 Authorization ... 76

6.4 Auditing ... 78

6.5 Privacy .. 80

6.6 Integrity ... 82

6.7 Availability ... 82

6.8 Nonrepudiation .. 83

Web Application Security Principles Page 7 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

7 DIFFERENT DESIGN APPROACHES ... 84

7.1 About the programming language ... 84

7.2 Intranet .. 86

7.3 Internet .. 87

7.4 Web Services .. 88

8 CONCLUSION .. 90

9 CRITICAL EVALUATION .. 95

10 BIBLIOGRAPHY ... 97

11 APPENDIX .. 107

11.1 Proposal .. 108

11.2 Meeting Protocols .. 109

11.3 Project Plan ... 118

11.4 Interim Report .. 119

Web Application Security Principles Page 8 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

LIST OF FIGURES

Figure 2 The stack .. 26

Figure 3 Overridden buffer .. 27

Figure 6 Login mask [the application can be found on the CD] 31

Figure 7 Input that evaluates always to true ... 33

Figure 8 Dropping a table from the login mask ... 34

Figure 9 Message Forum .. 37

Figure 10 Output ... 38

Figure 11 Displaying the cookies .. 39

Figure 12 Usability vs. Security [Source: Howard, Levy, Waymire 2000, p. 6] 44

Figure 13 Existing security principles for software development 53

LIST OF TABLES

Table 1 Vulnerabilities reported from 1995-2002 [Source: CERT 2003] 9

Table 2 Top Ten Vulnerabilities of 1st Quarter 2002 [Source: SecurityFocus 2002] 10

Table 3 Security Terminology [Source: Sommerville 2000, p. 368] 14

Web Application Security Principles Page 9 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

1 INTRODUCTION

1.1 Generally

Over the last years vulnerabilities in software products have increased

tremendously. According to the Carnegie Mellon University [CERT 2003] the total

number of vulnerabilities reported between 1995 – 2002 is 9,162. Nearly the half

(4129 which are 45%) were reported in 2002.1

 Year 1995 1996 1997 1998 1999 2000 2001 2002

 Vulnerabilities 171 345 311 262 417 1,090 2,437 4,129

Table 1 Vulnerabilities reported from 1995-2002

[Source: CERT 2003]

The word vulnerability is defined in detail in Chapter 3.

1 The most recent statistics can be found under http://www.cert.org

http://www.cert.org/

Web Application Security Principles Page 10 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

According to [SecurityFocus 2002] the top 10 vulnerabilities of the 1st

Quarter 2002 were:

Number Name of Vulnerabilities Date Released

1. Multiple Vendor SNMP Implementation Vulnerabilities February 12, 2002

2. PHP Post File Upload Buffer Overflow Vulnerabilities February 26, 2002

3. OpenSSH Channel Code Off-By-One Vulnerability March 7, 2002

4. Multiple Oracle 9i Remote Command Execution

Vulnerabilities

February 6, 2002

5. Multiple Vendor Java Virtual Machine Bytecode

Verifier Vulnerability

March 19, 2002

6. Microsoft VBScript Same Origin Policy Violation

Vulnerability

February 21, 2002

7. Gator Insecure ActiveX Control Vulnerability February 20, 2002

8. ZLib Compression Library Heap Corruption

Vulnerability

March 11, 2002

9. Microsoft Commerce Server 2000 ISAPI Buffer

Overflow Vulnerability

February 21, 2002

10. Internet Security Systems BlackICE and RealSecure

Buffer Overflow Vulnerability

February 11, 2002

Table 2 Top Ten Vulnerabilities of 1st Quarter 2002

[Source: SecurityFocus 2002]

Web Application Security Principles Page 11 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

This list shows that security vulnerabilities exist on a broad basis of

systems. Reaching from operating systems like UNIX or Windows to

programming languages like PHP and VBScript. Runtime environments like the

Java Virtual Machine and tools like firewalls (Black ICE) have also vulnerabilities.

The vulnerability on the top position is of interest because it is not just a problem

on one platform or implementation. It is a failure that spawns across many

different vendors of SNMP enabled systems. [CERT ADV 2002]

If you ask somebody on the street how secure a software product should

be, he might say high secure or 100% secure. What is a 100% secure system? Is

it possible to create a 100% secure system?

1.2 Aims of the report

This project concentrates on the security of web applications. The work

figures out vulnerabilities that exist in web applications and shows how the can

be prevented by applying the researched security principles.

1.3 Aims of the sample code

The aim of the sample code is to demonstrate researched vulnerabilities.

Most of the sample code is implemented in C# and ASP.NET.

Web Application Security Principles Page 12 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

1.4 Approach

Chapter 2 Defines the notion security from different point of views.

Different security threat models are researched.

Chapter 3 In this chapter security vulnerabilities of web applications are

researched and code samples are given. The aim is to show

how these vulnerabilities might be exploited.

Chapter 4 This chapter deals with the impact that security has on the

usability of web applications. This is done by discussing

server and client side components.

Chapter 5 This chapter gives an overview about existing software

security principles. In addition recommendations on how to

apply the researched knowledge to build secure enterprise

web applications are given.

Web Application Security Principles Page 13 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Chapter 6 The main elements of a secure web based enterprise

application are researched.

Chapter 7 Design issues are discussed - including Internet-

Applications, Intranet-Applications, Web Services and the

choice of the programming language.

Chapter 8 This chapter includes the critical evaluation of the author. It

highlights weaknesses and strengths of this work.

Generally References and applications are included on the attended

CD.

Web Application Security Principles Page 14 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

2 SOFTWARE SECURITY

In this chapter “security” is defined from different point of views. It is shown

that security is a property of software and therefore has to be considered from the

beginning of a project.

2.1 What is security?

According to [Sommerville 2000, p. 545] security is an attribute of the

overall software quality. There are some words that are often used in the context

of security. The following table gives a definition of these terms:

Exposure Possible loss or harm in a computing system.

Vulnerability A weakness in a computer-based system that may be

exploited to cause loss or harm

Attack An exploitation of a system vulnerability

Threats Circumstances that have potential to cause loss or harm

Control A protective measure that reduces a system vulnerability

Table 3 Security Terminology [Source: Sommerville 2000, p. 368]

Web Application Security Principles Page 15 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

“The security of a system is an assessment of the extent that the system

protects itself from external attacks that may be accidental or deliberate.

Examples of attacks might be viruses, unauthorised use of system services,

unauthorised modification of the system or its data, etc.”

[Sommerville 2000, p. 367]

This statement points out that security is not just important because of

attacks which are planned but also of accidentals.

“Remember: security is not something that can be isolated in a certain area

of the code. Like performance, scalability, manageability and code readability,

security awareness is a discipline that every software designer, developer, and

tester has to know about.”

[Howard, LeBlanc 2001, p. 22]

[Sommerville 2000, p. 367] states that errors in the development of a

system can lead to security loopholes. This means that a bug in a product can

lead to a security issue. Software is complex and has bugs. This implies that

there might never be a complete secure system.

Web Application Security Principles Page 16 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

“In the real world your software will likely never be totally secure.”

[Viega, McGraw 2002, Preface xxiv]

We know that systems can not be totally secure and might be broken.

Therefore it is important to audit system access. This will not prevent others from

entering the system but the unauthorised access attempts are logged. Important

information about the methods and strategies of attackers can be gained by

analysing the log-files. This information can be used to design more resistant

systems, because the strategies of the attackers are better known.

“Know your enemy, know yourself, and in 100 battles you will never be

defeated.”

[Tzu 500BC]

There is a project that focuses on these auditing, monitoring and analysing

purposes in networks called “The Honeynet Project”.2

2 http://www.project.honeynet.org

http://www.project.honeynet.org/

Web Application Security Principles Page 17 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

“The Honeynet Project is about setting up a system that is only there to be

attacked. Tracing, auditing and monitoring these attacks will allow you to

understand how the ‘blackhat’ community works. Which tactics they use and how

the try step by step to break into your system.”

[Spitzner 2002]

Founder of the Honeynet Project

The information that can be retrieved from a Honeynet is tremendous. Mr.

Spitzner sees security from a military perspective. By observing and analysing

the attacks of a Honeynet a lot of useful information can be achieved. Like scouts

in military organisations, Honeynets are used to identify the enemy, find out how

they are acting and which weapons they use.

Security requirements (like others) change over time. It is typical for

software that the overall design has to be adapted to fulfil the requirements. A

design process that is aware of this agile process like the spiral model [Boehm

1988] allows better integration of security than the waterfall approach

[Sommerville 2000, p. 367]. Security has to be integrated in all phases of the

application development cycle, starting in the early design phases.

Web Application Security Principles Page 18 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Adding security later on might create other risks because it is not completely

integrated into the system. This is true not just for software. For instance think of

civil aircrafts with pilots wearing guns or having access to guns for safety reasons

during flight. This is a good example for security added later on and might bring

more risks than it prevents. Possible attackers do not even need to bypass

security checks on the ground to bring a weapon on board. The main point is that

security cannot be added later on. It has to be included in the overall design

process.

According to [Pfleeger 2001, p. 119], a security plan should be part of the

overall project plan. This is also often called a “Security Policy”. [BS7799]

“Security involves the protection of assets, where assets are defined as

anything with value.”

[Howard, LeBlanc, Waymire 2000, p. 23]

This implies that a non secure system allows access to protected data. But

what is an asset with value? Who says that an asset has more value than

another? Threats and risks have to be defined and prioritised and a plan has to

be defined for the risks with the most impact.

Web Application Security Principles Page 19 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

“The fundamental technique is to begin early, know your threats, design for

security and subject your design to thorough objective risk analyses and testing.”

[Viega, McGraw 2002]

Security has to be seen in the context of many other concerns. Decisions

have to be made, what should be secured to which degree? What will happen if

someone breaks into your system because it was not secure enough?

Risk Management has to be undertaken. Storing the credit-card numbers of

customers becomes a problem when somebody breaks into your system and

steals those numbers. The impact of this scenario would be rather big. After such

issues customers may leave and go to competitors. According to [MSF 2002] the

top risks have to be defined. This has to be seen in a more general context –

security is not the only issue. Resources (money, employees), Time-To-Market or

the usability of a system are other important factors. It has to be defined how

much effort should be invested into the security of a system.

The process of risk management is a huge topic and not part of this work.

Web Application Security Principles Page 20 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

2.2 Security Threats

Nowadays most computer systems are connected together through the

Internet. Everybody working on a PC connected to the Internet is a possible

victim of an attack. Before the Internet was so widely spread and mainstream the

overall damage an attack could made was much more limited. Today the amount

of victims has grown tremendously. In addition the details of a specific

vulnerability can be distributed easily to a broad audience via the Internet. This

means that also people without the explicit knowledge of how the system

internals work are able to make serious damage. Those people are often called

script kiddies.3

According to [Sommerville 2000, p. 167] there are three types of damage

that may be caused through an external attack:

1. Denial of service

2. Corruption of programs or data

3. Disclosure of confidential information

Denial of service attacks might lead to inoperable services because the

attacked systems cannot be reached. For instance an online web shop might be

3 see [Spitzner 2002, p. 87] and [Viega, McGraw 2002, p. 5]

Web Application Security Principles Page 21 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

attacked and therefore the service is not available for customers. This has direct

business impact on the company, leading to loss of revenue. The corruption of

programs or data means that programs or data might be altered. This can lead to

systems acting in unpredictable ways – the reliability of the system is in danger.

Confidential information like credit card information might be stolen by attackers

leading to privacy loss.

In addition [Howard, Levy, Waymire 2000, p. 23] define the STRIDE model

which defines security threats:

S Spoofing user identity

T Tampering with data (integrity)

R Repudiability

I Information disclosure (disclosure)

D Denial of Service

E Elevation of privilege

Web Application Security Principles Page 22 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

There are three additional threats defined in the STRIDE model compared

to the threats listed by Sommerville. These are Spoofing users’ identity,

repudiability and the elevation of privileges.

Spoofing another user’s identity happens when an attacker uses another

person’s identity to gain access to a system. This can be done by guessing

passwords or stealing the session identification and hijack the session.

Repudiability means that a user might perform illegal operations which get

not traced because the system lacks this ability.

The elevation of privilege means that unprivileged users gain privileged

access to the system. The attacker becomes member of a trusted system and

can cause damage.4

4 compare with [Howard, Levy, Waymire 2000, p.19-20]

Web Application Security Principles Page 23 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

3 SECURITY VULNERABILITIES

This chapter discusses the main security vulnerabilities that exist in web

applications. The vulnerabilities are explained in detail with code samples. There

exist more vulnerabilities (e.g. different kind of code injections) but they rely on

those researched in this chapter.

3.1 Vulnerability defined

“Vulnerability is a weakness in a computer-based system that may be

exploited to cause loss or harm.”

[Sommerville 2000, p. 268]

“A vulnerability is a weakness in a system, such as a coding bug or a design

flaw.’”

[Howard, LeBlanc 2002, p.36]

The second statement clearly states that vulnerabilities can come from

coding errors and design failures. The second statement implies that every bug is

a vulnerability. In my opinion the statement from Sommerville is more appropriate

because it distinguishes between bugs and bugs that might be exploited.

Web Application Security Principles Page 24 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

3.2 Buffer Overflow

According to the [CERT ADV 2002] buffer overflows are responsible for

more than 50% of all software security leaks.

There are famous worms that used buffer overflows:

• Buffer overflow in fingerd in 1988 [Spafford 1991]

• Nimda Worm [SYMANTEC 2002]

• SQL.Slammer in January 2003 [CERT ADV 2003]

What is a buffer overflow?

A program needs to store information in memory. Therefore the application

has to allocate space. This allocated space is the buffer. There are two storage

places, the stack and the heap. This work just considers buffer overflows that can

occur by allocating memory on the stack. According to [Viega, McGraw 2002, p.

155] heap overflows are more difficult to achieve, but it is also possible.

Web Application Security Principles Page 25 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Figure 1 Buffer overflow example

#include <stdio.h>

void callCode(char* input)

{

 char buffer[4]; /* 4 character buffer */

 strcpy(buffer, input); /* copy the input into 4 char buffer */

 printf(“The buffer holds: %s\n”, buffer);

}

int main(int argc, char* argv[])

{

 callCode(argv[1]); /* call the function with the given input */

}

The buffer can be used to store information. The programming language C

does not check if you insert too much data into the buffer. The memory space

after the allocated buffer gets overridden when a data block is inserted that is

over the size of the allocated memory block – this is called a buffer overflow or

sometimes also referred to as buffer overrun.5

A sample – The stack overflow

5 compare with [Howard, LeBlanc, p. 63]

Web Application Security Principles Page 26 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

What happens when a 6 character string is copied into a 4 character buffer?

When a buffer overflow occurs the following can happen according to [Viega,

McGraw 2002, p. 138]:

• Program acts in an unpredictable way

• Program could fail completely

• The execution goes on without any noticeable difference in

execution

When a function gets executed the arguments are pushed onto the stack.

Then the base pointer and the instruction pointer are pushed on the stack.

Afterwards the execution jumps to the function and space for the buffer variable

is allocated.

At this time the stack looks like:

Figure 2 The stack

4 byte buffer 4 byte base pointer 8 byte instruction pointer

Web Application Security Principles Page 27 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Figure 4 executing the code

mano# gcc stackoverflow.c –o stackoverflow

mano# ./stackoverflow 123

the buffer holds: 123

mano# ./stackoverflow 123456789012

mano# Feb 14 20:55:44 mano /kernel: pid 248 (stackoverflow), uid 0:

exited on signal 11 (core dumped)

If the input has more then 4 bytes the base pointer gets overridden and if

the input exceeds 8 bytes also the instruction pointer (which holds the return

address to the calling function) is overridden.

For instance if 12 characters are copied into the buffer it would overrun and

the stack would look like:

Figure 3 Overridden buffer

An application reacts on such input as shown below:

X X X X X X X X X X X X

4 byte buffer 4 byte base pointer 8 byte instruction pointer

Web Application Security Principles Page 28 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Figure 5 registers during the crash

mano# gdb ./stackoverflow ./stackoverflow.core

(gdb)info registers

eax 0x19 25

ecx 0x280ea478 672048248

edx 0xbfbffb74 -1077937292

ebx 0x2 2

esp 0xbfbffbf0 0xbfbffbf0

ebp 0x38373635 0x38373635

esi 0xbfbffc5c -1077937060

edi 0xbfbffc68 -1077937048

eip 0x32313039 0x32313039

eflags 0x10282 66178

This leads to a crash of the program. Taking a look into the registers using

the debugger gdb6:

The registers show that the instruction pointer (eip) holding the value of

0x32313039 (in decimal this is 9012) – which are the last 4 bytes that we

entered. The hex value has to be read from back to forth. This value is not a valid

return address. This is the reason why the application crashed.

6 Copyright 1998 Free Software Foundation, Inc

Web Application Security Principles Page 29 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

The instruction pointer could be overridden with a value of a valid address

and the program execution would jump to this address and code execution would

continue.

Whereas buffer overflows might not directly subject web applications, it has

to be considered that components (dynamic link libraries) which are used by web

applications are written in a programming language like C. If the web application

does not correctly handle user input, functions of the DLL might be called and a

buffer overflow can be exploited.

Web Application Security Principles Page 30 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

3.3 Code Injections

Injection vulnerabilities happen when data entered by a user becomes

executable. Examples are SQL, Server Side Includes or PERL. To show how this

kind of attack works the SQL Injection has been researched in detail. For

demonstration purposes a sample application and database have been

implemented.

3.3.1 SQL Injection

SQL the Structured Query Language for database systems is a powerful

way to retrieve and update data in a database system. Web applications that do

not validate the input correctly could be injected with SQL code that allows the

attacker to retrieve sensitive information and in the worst case to gain access to

the whole system.

Web Application Security Principles Page 31 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Assume the following web application (this application has been

implemented and can be found on the compact disc included with this project):

Figure 6 Login mask

[the application can be found on the CD]

This application has to validate the entered information (username and

password) against a database to figure out if the entered user exists and the

password is correct.

Web Application Security Principles Page 32 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

loginSql = "select userid from users where username='" +

 TextBoxUsername.Text + "' AND password='" +

 TextBoxPassword.Text + "'";

exec sp_executesql N'select userid from users

where username=''mano'' AND password=''p@ssword'''

‘ OR 1=1; --

This is often done with a concatenated SQL query string which is generated

like:

Analysing the SQL code which is executing against the database with a

profiling tool7 shows that the following statement is executed against the

database system:

We can knock on the door of the application by entering:

The ‘ at the beginning correctly closes the first SQL statement. The OR 1=1

statement makes a valid SQL query that is always true. By adding two dashes at

the end the following code is considered as a comment by the database system.

7 In this case the “Profiler” which is part of Microsoft SQL Server 2000 is used.

Web Application Security Principles Page 33 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

exec sp_executesql N'select userid from users where username='''' OR

1=1; --'' AND password='''''

For instance, this input creates a valid SQL query:

Figure 7 Input that evaluates always to true

The profiler shows the following statement which was executed:

Web Application Security Principles Page 34 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

After this statement is executed we are logged into the system. If the

database system runs under an over privileged account the outcomes might be

fatal.

Let’s assume the user that is used to connect to the database has database

owner privileges in the database:

Figure 8 Dropping a table from the login mask

Web Application Security Principles Page 35 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

exec sp_executesql N'select userid from users where username='''' OR

1=1; drop table users; --'' AND password='''''

The SQL Server Profiler shows that this gets executed against the database

system:

This drops the users table from the database.

Web Application Security Principles Page 36 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

3.4 Cross Site Scripting

Cross site scripting are a relatively new class of attacks in comparison to

buffer overflows. The name comes from [CERT 2000] and was published first in

February 2000. To show the aims of a Cross Site Scripting attack a sample

message forum application has been implemented.8

Session Cookie handling

Web applications have to create some kind of session information because

of the nature of the HTTP protocol. This session identifier is normally created

upon the logon of the user to the application. Another person could sniff this

information that is sent by the client with every request. For instance in ASP.NET

this session identifier is a cookie which is sent by the client through an HTTP

header or the URL. With Cross Site Scripting it is possible to gain this

information. The session identifier can then be used to hijack the session.

8 This application can be found on the compact disc.

Web Application Security Principles Page 37 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

This is done by sending requests to the web application with the session

identifier (cookie) from another valid session. I would prefer the use of session

cookies via an HTTP header rather than sending the cookie in the URL because

the information in the URL is stored in the browser history.

The implemented application looks like:

Figure 9 Message Forum

Web Application Security Principles Page 38 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

 <script language="javascript"> alert("hello"); </script>

<script language="javascript"> document.write(document.cookie+"\n");

</script>

In the sample application above it is possible to post the following message

to the forum:

The next time the messages are refreshed the message above is read and

integrated into the HTML page which ends up with a message box that looks like:

Figure 10 Output

Attackers with knowledge of JavaScript can for instance display the cookie

information in the forum with:

Web Application Security Principles Page 39 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

<script language="javascript"> image = new Image();

image.src = “http://ThirdServer/cookie.gif”+document.cookie;

</script>

This leads to the following response of the application:

Figure 11 Displaying the cookies

We can use this information (the session cookie) and send it to a third

server with:

Web Application Security Principles Page 40 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

With this script the client sends the cookie information to a third server. The

information posted could be used to hijack the session of the user because the

session cookie has been stolen. A web application is vulnerable to Cross Site

Scripting if it returns data users enterd without proper validation and encoding.

Client side validation of input information is not enough. There are tools

available that allow bypassing this client side scripting validations.

Web Application Security Principles Page 41 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

GET /scripts/..%5c../winnt/system32/cmd.exe 404

GET /scripts/..%5c../winnt/system32/cmd.exe 404

GET /scripts/..%5c../winnt/system32/cmd.exe 404

GET /scripts/..%2f../winnt/system32/cmd.exe 404

3.5 URL Traversal

For researching purposes a Windows XP system running the web server IIS

5.1 was installed and connected to the Internet. After days of running the web

server the log files were analysed. The following entries could be found9:

These entries are chosen because they show a Unicode Web Traversal

attacks. The attacker tries to gain access to directories outside of the virtual root.

The request shown above is typical for the W32.Nimda.A@mm first discovered in

September 2001 [SYMANTEC 2001].

The aim of a URL Traversal attack is to jump out of the virtual directory of

the web application and execute commands. Because the system runs Windows

XP and IIS 5.1 the attack was not successful.

9 On a standard installation of Windows XP the log files can be found under

%systemroot%\system32\logfiles\W3SVC1\.

mailto:W32.Nimda.A@mm

Web Application Security Principles Page 42 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

http://webserver/../../winnt/system32/cmd.exe?/c+ dir

\ is Unicode encoded 005c the browser replaces the 00 with % which leads to %5c

/ is Unicode encoded 0025 the browser replaces the 00 with % which leads to %25

A web browser encodes certain characters before it sends the request to

the web server. It encodes them to Unicode characters and replaces the 00 with

a %.

For instance:

The aim of such a traversal attack is to gain unauthorised access to system

commands. The following sample shows that aim.

This request tries to execute cmd.exe. Internet Information Services denies

the ../ (dot dot slash). An issue is that an already encoded value can be encoded

again – some web servers do have a problem with this. When the / is encoded to

its Unicode representation (%5c) and afterwards the % is again encoded the

attack might work if we have execute permissions in the directory of the web

server.

Web Application Security Principles Page 43 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

http://webserver/scripts/..%255c..%255c../winnt/system32/cmd.exe?/c+d

ir

On a standard installation of Internet Information Services 4 and 5 the

scripts directory under c:\inetpub\scripts has execute permissions. Calling the

command from this directory with the following request returns a directory listing.

These URL Traversal attacks are well known and the vendor’s statement is

described in [MS00-078]. There is a patch available for this vulnerability but

installing the virtual root onto a different partition than the system would not have

given an attacker the possibility to access system commands at all.

Tools like the URLScan utility support the validation request URLs.10

Internet Information Services 6.0 will also use this utility. [Berry 2002]

10 for additional information see URL Scan Utility:

http://www.microsoft.com/downloads/details.aspx?FamilyID=12244f33-a5da-4203-a3a8-

83f4388bb71f&DisplayLang=en

http://www.microsoft.com/downloads/details.aspx?FamilyID=12244f33-a5da-4203-a3a8-83f4388bb71f&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=12244f33-a5da-4203-a3a8-83f4388bb71f&DisplayLang=en

Web Application Security Principles Page 44 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

4 SECURITY VERSUS USABILITY

In this chapter the impacts of security on the usability of web applications

are discussed. This is done by examining the server side and the client side of

web applications.

4.1 Generally

[Howard, Levy, Waymire 2000, p. 6] explain that there exists a general

trade-off between security and usability. They say: “Secure systems are usually

less usable.”

Figure 12 Usability vs. Security

[Source: Howard, Levy, Waymire 2000, p. 6]

Increasing Security

Increasing

Usability

Web Application Security Principles Page 45 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

4.2 Server

Most software products shipped can be used after the installation process

has completed. Users do not have to customise services if they want to use

them. Although this might be okay for development or testing purposes, running

software in a production environment with the default settings is one of the main

security risks.

Microsoft is a company that is famous for ready to use software products –

on the desktop and also on the server market. The ease of use by having a

graphical user environment to fulfil administrative tasks on the server side is one

point that splits system administrators. “Why does a server operating system

need a graphical user environment with a 24 bit colour desktop mode, running

screensavers that slow down the overall performance of the server?” On the

other hand people say that this provides more comfort and the product is easier

to use. Many operating systems install additional software components that might

not be needed to fulfil the specific task the system is aimed for. Windows 2000

Server is installing Internet Information Services automatically, although you may

not even host web sites on the machine. This means an extreme overhead that

has to be accomplished by de-installing the services.

Web Application Security Principles Page 46 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

For this purpose unattended machine setups should be generated that

install only the needed components. Companies should integrate this feature that

for instance Windows products provide to allow quick installation of previously

defined standard systems. In addition a “slip streamed“ setup11 should be

generated to accomplish the integration of the newest service packs and hot fixes

at installation time.

According to [Gates, 2002] – the “Trustworthy Computing Statement” -

future versions of Microsoft products will not be enabled with all features by

default. The aim is to provide a system which is “Secure by Default”. The new

Windows Server 2003 will have no web server installed by default and also after

installing the new IIS 6, it will only allow to run static web pages by default – so

system administrators have to turn on those components they need. It will be

very interesting to see how the community will react to this new situation because

it becomes more difficult to run and administer systems. But this will definitely

lead to more secure systems.

11 This means that the operating system has automatically installed the new service pack. Usually

a service pack can be “slip streamed” to the base image with the update command.

Web Application Security Principles Page 47 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Oracle ships its database system 9i with an Apache server that is started

automatically. Or diverse Linux distributions install components by default, which

are not needed. It will be interesting to see if the strategy of those companies and

distribution providers will also change.

Most recent operating systems have an automatic update service or you

can add software to the system with specific tools that ship with the operating

system. For instance under FreeBSD 4.7 you can use the pkg_add command to

install additional components (so called ports).12 You need to trust software that

gets installed in such a way because you may not be able to verify the origin.

This can be done with the use of signatures.

For Intranet scenarios I would recommend to generate a dedicated server

that is connected to the Internet and retrieves the most recent updates. Clients

should connect to this server to download the updates. This design allows better

use of the Internet bandwidth and decreases the duration of updates. There is a

server product called the Microsoft Software Update Service that provides this

functionality.

12 The ports can be found under http://www.freebsd.org/ports

http://www.freebsd.org/ports

Web Application Security Principles Page 48 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Software designers have to consider that if the software is not usable it is

predicted to die. Think about the highly flexible software solutions that have to be

configured by dozens of configuration files – system administrators which have

grown up with graphical user interfaces do not like those systems and may

abandon them. System administrators generally should use scripts to configure

the system in a consistent and documented way.

4.3 Client

On the client side the usability is more important than on the server side.

For example according to the HTTP protocol after a user requests a web page

secured by “Basic Authentication” the browser has to ask the user for a

username and password.13 This check has to be done by every resource which

the client is accessing (e.g. html files, images,…). Browsers simplify this task by

asking the user once for this information and cache it for future use.

13 compare with [RFC 1945 HTTP1.0] and [RFC 2068 HTTP1.1]

Web Application Security Principles Page 49 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Browsers like Internet Explorer or Mozilla also provide a methodology to

store username/password combinations for future uses.14 This seems to be an

useful feature because users often use different credentials when accessing web

sites. It is hard to remember those username/password combinations. The

usability is increased but what is with the security side? Having stored this

information locally on the PC means that the possibility exists that unauthorised

people gain access to this information.

14 Mozilla has the possibility to store the entered username with the according password and the

next time you visit the login page of the application the username and password input fields are

filed out automatically. Internet Explorer acts in a similar way and presents the stored information

after the user starts entering data into the input field, this feature is called Auto Complete.

Web Application Security Principles Page 50 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5 PRINCIPLES OF SECURE DEVELOPMENT

The aim of this chapter is to figure out software security principles. This is

done by researching existing principles. It is shown how these principles can be

applied to web applications and how to prevent the vulnerabilities explained in the

previous chapter.

5.1 Generally

“The goal of these principles is to identify and to highlight the most

important objectives you should keep in mind when designing and building a

secure system. Following these principles should help you avoid lots of common

security problems.”

[Viega, McGraw 2002, p. 92]

“A comprehensive security strategy first requires a high level recognition of

overall Security Principles.”

[Romanosky 2002]

Web Application Security Principles Page 51 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2 Existing Principles

[OWASP GUIDE 2002] define the following security guidelines:

• Validate Input and Output

• Fail Securely (Closed)

• Keep it Simple

• Use and Reuse Trusted Components

• Defence in Depth

• Only as Secure as the Weakest Link

• Security by Obscurity Won’t Work

• Least Privilege

• Compartmentalization (Separation of Privileges)

[Viega, McGraw 2002, Chapter 5] define 10 Guiding Principles:

• Secure the weakest link

• Practice defence in depth

• Fail securely

• Follow the principle of least privilege

• Compartmentalize

Web Application Security Principles Page 52 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

• Keep it simple

• Promote privacy

• Remember that hiding secrets is hard

• Be reluctant to trust

• Use your community resources

[Meier, Mackman, Vasireddy, Dunner 2002] identify the following principles:

• Adopt the principle of least privilege

• Use defence in depth

• Don’t trust user input

• Use secure defaults

• Don’t rely on security by obscurity

• Check at the gate

• Assume external systems are insecure

• Reduce surface area

• Fail to a secure mode

• Remember you are only as secure as your weakest link

• If you don’t use it, disable it

Web Application Security Principles Page 53 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

The following table shows the principles and the resource that defines it.

Principle OWASP

(2002)

Viega, McGraw

(2002)

Meier, Mackman,

Vasireddy, Dunner

(2002)

Validate Input, Don’t trust user input  

Validate Output 

Fail Securely (Closed), Fail to secure mode   

Keep it Simple  

Use and Reuse Trusted Components / Use your

community resources

 

Defence in Depth   

Only as Secure as the Weakest Link   

Security by Obscurity Won’t Work  

Least Privilege   

Compartmentalization (Separation of Privileges)  

Promote privacy, Reduce surface area  

Remember that hiding secrets is hard 

Be reluctant to trust 

Use secure defaults 

Check at the gate 

Assume external systems are insecure 

If you don’t use it, disable it 

Figure 13 Existing security principles for software development

Web Application Security Principles Page 54 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

The listed principles are not only for web applications but for software

applications in general. The given principles are discussed in detail below. Some

of those principles go hand in hand but others are in conflict to each other.

5.2.1 Validate Input

Many web applications allow users to input data. To react on the entered

information the input has to be processed. Often the user input is forwarded

directly to business or even data access components without proper validation.

This can lead to unwanted behaviour as described in the previous chapter (Buffer

Overflows, SQL/Script Injections, Cross Site Scripting).

The input validation principle is important and vulnerabilities can be avoided

by applying an enterprise wide policy. The policy should state that every input is

denied by default and that it clearly has to be defined which characters are

allowed for specific purposes. Developers have to be aware of this crucial part of

their work. Every function every method should be secure on its own by validating

input and output. Normally characters like < > % .. are not necessary for users to

enter and can lead to vulnerabilities as we have seen in the previous chapters.

The input has to be validated.

Web Application Security Principles Page 55 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

It is important that this input validation checks are not only done at the client

side. Implementing input validation with Java Script on the client side gives the

user a better usability but it does not provide security. The information sent by a

client can be manipulated, leading to a client sending the characters which are

explicitly forbidden. Or the client side scripting functionality can be turned off.

The validation checks can be implemented with regular expressions. In

ASP.NET the RegularExpressionValidator control can be used to implement the

validation check.

First the ValidationExpression property has to be defined. For instance for

an Austrian postal code it is: ^(A-)?\d{4}. This is the valid input pattern. Then the

ControlToValidate property has to be set to the textbox that should be validated

against the defined pattern. When the page is posted to the server then the

validation is done and if it matches the defined pattern everything is all right. The

RegularExpressionValidator does the validation check always on the server but in

addition it is possible to provide client side checks which will improve usability.15

Implementing this kind of input validation for every textbox in a web application

might be much overhead.

15 The EnableClientScript property is enabled by default.

Web Application Security Principles Page 56 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Therefore a new class should be created which derives from the standard

textbox. In addition this textbox implements regular expressions to validate the

input. Regular Expression can become very complex.16 Therefore I suggest using

existing resources on the Internet that have templates available for common used

Regular Expressions.17

5.2.2 Validate Output

16 Regular Expression for an valid IP-Address [taken from http://regexlib.com]:

^(25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9])\.(25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-

9]{1}[0-9]{1}|[1-9]|0)\.(25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9]|0)\.(25[0-5]|2[0-4][0-

9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[0-9])$

17 See http://regexlib.com for templates and help about Regular Expressions.

http://regexlib.com/
http://regexlib.com/

Web Application Security Principles Page 57 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Many applications just return the output that is coming directly from the

system. The information provided in those standard output messages is very

useful for attackers. An attacker may find out which systems are running behind

the web application. This gives an attacker the chance to test for specific

vulnerabilities which are known for those systems.

Providing uncontrolled output messages give users information that they

should not get. There are two kinds of users. Those who do not understand the

output that is generated by the application – given a user friendly output message

to them might help them to fix the problem themselves. Others might be those

who understand what is going on under the hood and they learn to get familiar

with internals of the application.

For instance if a user provides wrong user credentials at the login page the

output should be like: ”Unknown user or wrong password.” The output should

never include which of the two values (username or password) are incorrect. By

providing information like: “The user does not exist!” an attacker gains information

about the active user accounts of the system.

Usually the standard error messages of web applications display the file

name in which the error occurred. This information should be avoided. Under

Web Application Security Principles Page 58 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

ASP.NET this can be configured in the web.config file of the application. With the

use of the customErrors mode attribute, it is possible to customise error

messages generated by the system. I would recommend to set the customErrors

mode On in production environments. This will not display detailed error

information (filename, stack trace) to the user.

To proper handle exceptions in a secure and consistent way the Exception

Management Application Block for ASP.NET should be used.

“The Exception Management Application Block can easily be used as a

building block in your own .NET application. If you use it, you will reduce the

amount of custom error handling code you need to create, test, and maintain.

You will also make your application more robust and easier to debug.”

[Jones, Malcolm, Mackman, Jezierski 2002]

Figure 14 Do not display detailed error messages

 <customErrors mode=“On“ defaultRedirect=“ErrorPage.aspx“/>

Web Application Security Principles Page 59 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.3 Fail Securely

 “Failure is unavoidable and should be planned for.”

[Viega, McGraw 2002, p.97]]

Because failures are unavoidable it is important that the system falls in a

well defined (secure) mode when a failure occurs. Think of doors during a fire-

alarm they normally automatically close to prevent the fire from growing. In an

application this might mean that sensitive data becomes unprotected. For

instance exceptions are thrown and detailed error messages are displayed (see

the previous principle for output validation)

5.2.4 Keep it simple

“Complex design is never easy to understand, and is therefore more likely

to include subtle problems that will be missed during analysis. Complex code

tends to be harder to maintain as well. And most important, complex software

tends to be far more buggy.”

[Viega, McGraw 2002, p. 104]

Web Application Security Principles Page 60 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.5 Use and Reuse Trusted Components / Use your

community resources

“Using and reusing trusted components makes sense both from a resource

stance and from a security stance. When someone else has proven they got it

right, take advantage of it.”

[OWASP GUIDE 2002, p. 10]

Using well-known algorithms that are already tested and running for a long

time are a better solution than an own implementation. For instance implementing

an own cryptographic algorithm might be a very interesting task for many

developers, but using an existing algorithm, which is known to be working is

much better. Good cryptographic algorithms are designed in a way that detailed

knowledge of the algorithm does not influence its security. This means that a

good cryptographic algorithm works because of its design and not because the

implementation is hidden.

“Repeated use without failure promotes trust.”

[Viega, McGraw 2002, p. 93]

Web Application Security Principles Page 61 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.6 Practice Defence in Depth

According to [Viega, McGraw 2002, p. 96] the aim of this principles is to

have different layers of security. If one layer is inadequate for catching a failure

the next layer should catch it. This means that redundancy should be included in

the system.

For instance to prevent SQL Injections, input validation should be done at

the business layer. With the correct use of stored procedures at the data access

layer SQL Injections can also be prevented. This shows two layers where

security can be applied to avoid SQL Injection vulnerabilities. In addition stored

procedures allow better performance and easier administration. For instance to

correctly call a stored procedure in C# the ADO.NET command object with the

use of the “Parameters” collection have to be used.

SqlCommand com = new SqlCommand("usp_GetStockPrice",con);

com.CommandType = CommandType.StoredProcedure;

SqlParameter paramStock =

com.Parameters.Add("@Stock",SqlDbType.NVarChar, 30);

paramUsername.Value = txtStock.Text

com.ExecuteNonQuery();

Web Application Security Principles Page 62 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.7 Secure the weakest link

[Viega, McGraw 2002, p. 93] state that security is a chain and therefore just

as a chain is only as strong as the weakest link, a software security system is

only as secure as its weakest component.

In my opinion social issues are often the weakest link in the security chain.

People often choose passwords which reflect their interests or hobbies. By

researching these interests, passwords might be guessed. Another sample of

social engineering is that for instance helpdesk employees give password

information to people who call them. Typically in this scenario there is no identity

verification of the caller.

5.2.8 Security by Obscurity, Transparency, Ease of Use

“[…] the main problem stems from a false belief that code compiled into

binary remains secret just because the source is not available. This is wrong.”

[Viega, McGraw 2002, p. 69]

Web Application Security Principles Page 63 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

People who are able to read machine code can find out what a program

does. There are also tools available that disassemble binary code. When

programming languages like Java and C# are used this task gets even simpler

because the generated code is available in an intermediate form (Byte Code or

Intermediate Language). This intermediary format is much easier to read than

machine code. With tools like Anakrino18 it is possible to reverse engineer the

source code.

5.2.9 Principle of Least Privilege

“The principle of least privilege states that only the minimum access

necessary to perform an operation should be granted, and that access should be

granted only for the minimum amount of time necessary.”

[Saltzer 1975]

Services and applications running under accounts having too high privileges

(e. g. Administrator or root accounts) have the potential to cause harm. The

password for the administrative accounts of Oracle and SQL Server database

18 http://test.saurik.net/anakrino

http://test.saurik.net/anakrino

Web Application Security Principles Page 64 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

systems are well known. Systems having enabled these accounts with the

standard passwords give attackers the possibility to gain access to the whole

system. For instance attackers exploiting SQL Injection vulnerabilities are able to

submit commands that harm the database system and even the operating

system. The reason for this is that often developers choose a powerful user

account to simplify the development and debugging process.

5.2.10 Compartmentalization, Segmentation

“The basic idea behind compartmentalization is to minimize the amount of

damage that can be done to a system by breaking up the system into as few

units as possible while still isolating code that has security privileges.”

[Viega, McGraw 2002, p. 102]

Every bank is working with this principle. They have many different security

and auditing systems installed. You are tracked while entering the bank. People

behind the shelf do not have access to a big amount of money – they are not able

to hand out a big amount of money to a robber. Adding this principle leads to a

more complex design of the overall web application.

Web Application Security Principles Page 65 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.11 Promote privacy / Reduce surface area

“Promote privacy for your users, for your systems, and for your code.”

[Viega, McGraw 2002, p. 109]

Attackers might try to find out which system is running. With this information

an attacker can search for a system which is vulnerable to a specific issue that

can be exploited. There are tools available like the whois and host command

which can be used to figure out more about a specific Internet domain. Or on the

Internet there are web sites which monitor web servers and domains.19

5.2.12 Remember that hiding secrets is hard

“Security is often about keeping secrets. Users don’t want their personal

data leaked. Keys must be kept secret to avoid eavesdropping and tampering.”

[Viega, McGraw 2002, p. 109]

19 for instance http://www.netcraft.com

http://www.netcraft.com/

Web Application Security Principles Page 66 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

There are many possibilities to store information like connection strings or

passwords. Deciding where and how to store this data is important to the security

of a web application. In order to securely store a password in a database, only a

hash of the password should be stored and not the password itself in clear text.

Using .NET this can be achieved with the use of the

HashPasswordForStoringInConfigFile method and the Cryptographic Service

Provider. This method takes two arguments the password to be hashed and the

algorithm that should be used:

5.2.13 Be reluctant to trust

According to [Viega, McGraw 2002, p. 112] one thing that has to be noticed

is that often by trusting one specific entity you implicitly trust every sub entity that

the entity trusts. This can lead to unwanted trust chains.

string hashPwd =

FormsAuthentication.HashPasswordForStoringInConfigFile(myPassword,"md5");

Web Application Security Principles Page 67 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.14 Use secure defaults

This principle is wrong. It implies that software is “Secure by Default” which

is not the case. I do not agree to this principle because software is not secure by

default as vulnerabilities have shown in the past. Also the “Trustworthy

Computing” statement from Bill Gates clearly states that “Secure by Default”

should be standard for software products [Gates 2002].

5.2.15 Check at the gate

“If you design solid authentication and authorization strategies at the gate,

you can circumvent the need to delegate the original caller’s security context all

the way through to your application’s data tier.”

[Meier, Mackman, Vasireddy, Dunner 2002, p. 6]

The main reason for this principle is a performance issue. This principle is

clearly against the principle of “Segmentation”, because components or tiers are

not secure on its own, they have to rely on a security check done earlier.

Web Application Security Principles Page 68 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

For instance a network that only provides security checks at the firewall is

insecure because a single client could use a dial up connection to connect to the

Internet and so the network is open to attacks.

5.2.16 Assume external systems are insecure

“If you don’t own it, don’t assume security is taken care of for you.”

[Meier, Mackman, Vasireddy, Dunner 2002, p. 6]

If third party components are used in web applications developers often

have to rely on the security of that component – therefore only trusted

components from trusted vendors should be used. This principle correlates with

the principles of input and output validation because for instance with the use of

Web Services a system might retrieve data from a business partner. In this case

the caller also has to check if the information sent by the Web Service is valid

and vice versa.

Web Application Security Principles Page 69 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

5.2.17 If you don’t use it, disable it

“You can remove potential points of attack by disabling modules and

components that your application does not require.”

[Meier, Mackman, Vasireddy, Dunner 2002, p. 7]

Many products often have services installed which provide surface for an

attack but are not used. It is a good advice to disable all services which are not

needed.

Web Application Security Principles Page 70 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6 ELEMENTS OF A SECURE DESIGN

In this chapter the elements of a secure design [as given by Howard,

LeBlanc and Waymire 2000] are researched and discussed.

6.1 Web Based Enterprise Solutions

Enterprise Solutions are applications that are used by companies to run

their businesses. Those applications include and integrate different components

and systems. Web based applications are made of different components.

[Howard, LeBlanc, Waymire 2000, p. 7] identify the following elements:

• Authentication

• Authorisation

• Auditing

• Privacy

• Integrity

• Availability

• Nonrepudiation

Web Application Security Principles Page 71 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6.2 Authentication

“Authentication is the process of determining if a user or entity is who

he/she claims to be.”

[OWASP GUIDE 2002, p.16]

6.2.1 Anonymous Access

This is the authentication where everyone accessing the web site is allowed

access and no authentication happens.

This type of authentication (which in fact is no authentication) should only

be used when the information on the site holds public content or if authentication

check is done at the application layer (see Forms Authentication).

Web Application Security Principles Page 72 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6.2.2 HTTP Basic Authentication [RFC 2617]

When a client requests a resource that forces basic authentication the

server returns the HTTP code 401 - unauthorized access. Typically the web

browser asks the user for his credentials (username and password) to gain

access to the resource. Username and password are transmitted using base 64

encoding. [Wong 2000] This means that the credentials are not encrypted and

can be monitored by other users. Secure Socket Layer should be used to

guarantee information disclosure.

6.2.3 HTTP Digest Authentication [RFC 2617]

The big advantage over “Basic Authentication” is that “Digest

Authentication” does not send the password in clear text over the wire. The

transmitted information is hashed using the MD5 algorithm developed by RSA

Data Security. For additional information see [RFC 1321].

According to [OWASP PLAN 2003, p. 17] Digest Authentication is part of

the HTTP 1.1 specification but it has been introduced earlier. When using the

original digest scheme it also works with HTTP 1.0.

Web Application Security Principles Page 73 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6.2.4 Forms Authentication

Web applications can use application layer authentication to validate user

credentials. This is most often implemented using an HTML page to ask the user

for username and password. Afterwards the information is posted to the web

server. Application designers have to be aware that this data is posted in clear

text. Therefore SSL should be used, at least for the login process.

This type of authentication is integrated into ASP.NET with the

FormsAuthenticationModule class. ASP.NET uses a cookie to send the session

identifier, either as an HTTP header or as part of the URL.

6.2.5 Integrated Windows authentication

This authentication types are proprietary and can only be used with the

combination of Internet Information Services and Internet Explorer.

Web Application Security Principles Page 74 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

NTLM and Kerberos

NTLM was the method of authentication in Internet Information Server

before Windows 2000. With the approach of Windows 2000 Kerberos became

the protocol for Integrated Security. Clients that are not able to communicate with

the web server via the Kerberos protocol will use NTLM.

The main advantage of Kerberos is that both the server and the client are

checked. According to [Howard, LeBlanc 2000, p. 120] with NTLM the client

might talk to a server that is not valid because the server is not authenticated.

Microsoft Passport

In the next version of Windows Server (Windows Server 2003) the web

server from Microsoft has the possibility to use Microsoft Passport for the

authentication of users.

Web Application Security Principles Page 75 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6.2.6 Digital Certificates

“Both SSL and TSL can provide client, server and mutual entity

authentication.”

[OWASP GUIDE 2002, p. 18]

Web servers can communicate encrypted with clients. This means that

certificates are used to identify the entities. In most cases only the identity of the

server is guaranteed but mutual entity authentication is also possible. If a secure

connection is established a closed key symbol () appears in the browser.

Digital Certificates should be used together with Basic Authentication to

provide secure transmission of user credentials when Integrated Windows

Authentication is not possible. This is typically the case with non Intranet

solutions. How Digital Certificates work in detail is not part of this work.

The trade-off of Digital Certificates is that they slow down the performance

of the web servers because the server has to validate the certificates and

encrypt/decrypt the data stream.

Web Application Security Principles Page 76 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6.3 Authorization

 “Authorization is the act of checking to see if a user has the proper

permission to access a particular file or perform a particular action, assuming that

user has successfully authenticated himself.”

[OWASP GUIDE 2002, p. 27]

The OWASP identifies the following access control mechanisms:

• Discretionary Access Control

• Mandatory Access Control

• Role Based Access Control

“Authorization is determined by performing an access check to see whether

the authenticated principal has access to the resource being requested.”

[Howard, LeBlanc 2002, p. 15]

Web Application Security Principles Page 77 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

<authorization>

 <allow roles=”MyDomain\Managers”>

</authorization>

In a web application each web page should check if the user accessing the

web page has the appropriate permissions. It is not a good to have a secret

administration page where only the administrator knows the URL. People can

guess these URLs. Or for instance a data file that is used by the application that

contains additional sensitive information that is not provided by the web

application could be downloaded by just accessing the URL of the database file.

This would be “Security by Obscurity” as explained in the previous chapter.

In ASP.NET authorisation can be done with the use of the

URLAuthorizationModule, the FileAuthorizationModule and Role checks can be

implemented. The URL Authorization can be configured in the web.config file.

For instance the following example will allow everyone from the Managers

Group of MyDomain access to the application.

Web Application Security Principles Page 78 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

To deny access to specific files in the virtual root appropriate ACL (Access

Control List) have to be defined. Explicit role checks are implemented with the

use of the Principal objects. These objects (Generic and Windows principals)

allow checking if the calling user has the appropriate permissions (role

membership) to access the web page. This is done with the IsInRole method. For

additional information about how this can be implemented see [Meier, Mackman,

Vasireddy, Dunner 2002]

6.4 Auditing

According to [Howard, Levy, Waymire 2002, p. 276] the process of auditing

has two main purposes:

• Provides the ability to determine whether, how, and when you were

attacked and what was attacked

• Provides the ability to troubleshoot security issues

The two points show auditing from a security perspective, auditing also

has other purposes, for instance traffic analysis and statistics.

Web Application Security Principles Page 79 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Generally logging should include information such as time of event,

initiating process or owner of process and a detailed description of the event.20 In

my opinion sensitive data should not be logged (for instance credit card number

or user information like passwords). The log files should only be accessible by

administrators. Auditing to many events is contra productive. Analyzing log files

and event logs is a very resource intensive task.

The process of defining what to audit might be very crucial to the overall

security process – by auditing the correct events malfunctioning code, which

accesses resources that it should not be allowed can be determined. Auditing

everything might lead to an unmanageable system.

Web server log files should be analysed with tools to get a better view on

system usage. There is a tool available called Advanced Web Statistics (awstats)

that allows analysing log files of IIS and Apache.21

20 see [OWASP PLAN 2003, Chapter 9 Event Logging]

21 http://awstats.sourceforge.net

http://awstats.sourceforge.net/

Web Application Security Principles Page 80 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6.5 Privacy

There are technologies that support privacy:

• Secure Socket Layer / Transport Layer Security

• Internet Protocol Security (IPSec)

Microsoft announced a new system that will allow software vendors and end

users to enhance privacy, integrity and data security.

“We are working on a new hardware/software architecture for the Windows

PC platform, code-named "Palladium," which will significantly enhance users'

system integrity, privacy and data security.”

[Gates, 2002]

Recently this system has been renamed to “Next-Generation Secure

Computing Base”. The system will provide applications an isolated part in the

memory of the PC. This is guaranteed through hardware components which are

currently not part of computer systems. This system is developed by the Trusted

Computing Platform Alliance.22

22 http://www.trustedcomputing.org

http://www.trustedcomputing.org/

Web Application Security Principles Page 81 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Communal Web Browsers

It is very common that web applications are browsed from different systems

and that users might share computers, for instance in an Internet Café.

[OWASP GUIDE 2002, Chapter 12] suggests to provide a warning in the

applications which includes:

• The possibility of pages being retained in the browser cache

• A recommendation to log out and close the browser to kill session

cookies

• The fact that temp files may still remain

• The fact that proxy servers and other LAN users may be able to

intercept traffic

Another aspect of the communal web browser is that the user of such a

system can stay anonymous. This fact makes these systems an ideal place for

starting attacks.

Web Application Security Principles Page 82 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

It is possible to set up these communal systems in a way that there are no

passwords stored and the browser history is disabled. This can be accomplished

with the use of Internet Explorer Administration Kit, Active Directory and Group

Policies.

6.6 Integrity

“When used in a security context, integrity refers to staying the same”.

[Viega, McGraw 2002, p. 23]

This means that data needs to be protected from being altered. The data

could be maliciously or accidental altered. Typical integrity technology includes

Secure Socket Layer, Transport Layer Security or the IPSec protocol.

6.7 Availability

This means that users who are legitimated to a system can access it,

whenever they need it. There are hard- and software technologies that support

this design goal. For instance this includes hard- and software load balancing for

distributing client requests upon a web farm.

Web Application Security Principles Page 83 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

6.8 Nonrepudiation

X.813 Information Technology – Open Systems Interconnection – Security

frameworks in open systems defines Nonrepudiation23 as:

• Nonrepudiation with proof of origin, which is used to counter false

denial by a sender that the data or its contents has been sent.

• Nonrepudiation with proof of delivery, which is used to counter false

denial by a recipient that the data or its context has been received.

“Nonrepudiation guarantees that the message sender is the same as the

creator of the message.”

[Samtani 2002]

To guarantee that a message has been sent by one specific entity Digital

Certificates should be used to digitally sign the message.

23 see http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.813-199610-I

http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.813-199610-I

Web Application Security Principles Page 84 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

7 DIFFERENT DESIGN APPROACHES

7.1 About the programming language

As shown previously in this work, most security vulnerabilities are buffer

overflows - more than 50%. The reason for this is because most applications are

written in C and C++. These languages might not always be the best choice

because they do not provide proper bounds checking (neither on the stack nor on

the heap). This is the reason way I do not recommend to use these languages in

the first place.

The reason why C is not the ideal programming language is clear. C was

created to simplify operating system development. Before the advent of C,

programmers had to use Assembler to accomplish this task. In the early 90s C

and also C++ where rapidly adopted by students as their primary language.

There are libraries in C (for instance the string.h) that provide a lot of non-secure

functions that when used can lead to buffer overflows.

Web Application Security Principles Page 85 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Examples for such functions are [Viega, McGraw 2002, p. 142]:

• strcpy

• strcat

• sprintf

• scanf

• sscanf

• fscanf

• vfscanf

• vsprintf

• vscanf

• vsscanf

• streadd

• strecpy

• strtrns

All these functions are not aware of buffer overflows. When arbitrary input is

passed to these functions a buffer overflow can be exploited.

Web Application Security Principles Page 86 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

There are situations where these languages have to be used because of

performance issues or simply because it is not possible to solve a problem in

another programming language. However if these languages are used tools like

the StackGuard24 or AppVerifier25 have to be used to check for buffer overflows.

For applications that implement business processes, languages like C# or

Java are the better choice. Those applications are running in a managed

execution environment that provides type safety and a garbage collection. The

developer can focus on the business issue that has to be solved rather than on

technical issues like freeing allocated memory.

7.2 Intranet

Many attacks are coming from within and organisation. It seems that most

intranet systems are not good prepared for these kind of attacks and/or that

management is not aware of that. In Intranet scenarios it is possible to create

much richer applications because the infrastructure is better known.

24 http://www.immunix.org/stackguard.html

25 http://www.microsoft.com/windowsxp/appexperience/appverifier.asp

http://www.immunix.org/stackguard.html
http://www.microsoft.com/windowsxp/appexperience/appverifier.asp

Web Application Security Principles Page 87 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

In an Intranet scenario it is often possible to use Integrated Windows

authentication at the web server which provides better security than the other

authentication types [Howard, Levy, Waymire 2000, p. 116]. The downside of the

Integrated Windows authentication of Internet Information Services is that all

clients who want to access the system need Internet Explorer. To provide privacy

and integrity those systems should use SSL/TSL and IPSec where appropriate.

7.3 Internet

The design of an Internet application is often more rudimentary. Because

services have to be provided to a broad community, it is necessary to use the

standard protocols defined for Internet communication and rendering. HTML 3.2

and Java Script are supported by most browsers (Opera, Mozilla, Internet

Explorer). Active content like Java applets or ActiveX controls should be avoided

because of security and usability reasons.

To provide privacy and integrity SSL/TSL should be used where appropriate

(for instance during logon). In addition digital certificates to sign messages should

also be implemented where appropriate, for instance for e-Government solutions.

Web Application Security Principles Page 88 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

7.4 Web Services

Companies provide and consume services to other business partners. To

do business with partners a contract has to be defined between the two or

possible more business partners on how to communicate and interchange

information. Web Services bring the solution to these problems. They allow

communication between different platforms using standardised protocols like

HTTP, SOAP and XML. Different applications from different vendors can “talk” to

each other [W3CWG 2002].

Integrating businesses of different companies is one domain of Web

Services. Because Internet communication is normally not encrypted most

companies use web services together with “Basic Authentication“ and wire

encrypted protocols like SSL (Secure Socket Layer) to interchange information.

Recently OASIS has proposed draft specifications for WS-Security, WS-Routing

and others to enable secure end-point to end-point communication for web

services. This is achieved with the use of digital certificates. [OASIS 2003]

IBM has created a SDK for their Web Sphere server and Microsoft is

shipping the Web Service Enhancements that provides those security

functionalities.

Web Application Security Principles Page 89 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

New security concerns arise with the use of Web Services. Therefore a lot

of new standards are proposed to the OASIS that allow secure end to endpoint

communication of web services. [OASIS 2002]

The security principles discussed earlier in this document (specially input

and output validation) have to be applied to web services.

Web Application Security Principles Page 90 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

8 CONCLUSION

Security in software applications has become a very important topic over

the last years. This is because today computer systems are highly interconnected

and the Internet has gone main stream.

Over the last years the number of vulnerabilities in software applications

has grown tremendously. The main vulnerability in software applications is the

“buffer overflow”. “Buffer overflows” are very important to take into consideration

in web applications. Many web applications call library functions which are written

in C/C++ and those library functions could be vulnerable to a “buffer overflow”. If

the entered information of the web application is not properly handled and the

data is directly given to the library function (without validation) the applications

might be vulnerable.

This leads us directly to another class of vulnerabilities the “Code

Injections”. “Code Injections” happen when an attacker enters code into the web

application that gets directly executed by the system. For instance SQL code is

entered at the logon screen of a web application that executes malicious code

against the database system.

Web Application Security Principles Page 91 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Another vulnerability that web applications have to be aware of is “Cross

Site Scripting”. “Cross Site Scripting” can be used to hijack a user session in a

web application. This is done by stealing the session identifier (typically a cookie)

that web applications have to use because of the stateless nature of the HTTP

protocol.

There are different vulnerabilities that exist in software applications.

Therefore a detailed literature research has been made on software security

principles. This work shows how these principles can be applied to web

applications.

The literature research has finally come up with 17 security principles for

software development. Applying some principles might not be possible without

violating other principles. This clearly shows that the task of secure development

is more than just the use of those principles. For instance the principle of “Keep it

simple” clearly states that software components should be easy to understand

and that unnecessary code should be prevented. But the principle of “Defence in

Depth” states that the application should have different layers and redundancy

built in because if the one layer fails another catches the failure. This principle is

clearly against the principle of “Keep it Simple”. This makes it hard for developers

to decide which is more important.

Web Application Security Principles Page 92 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

The principle “Check at the gate” states to do authorisation and

authentication check at one point – this is suggested because of performance

issues that might occur when handling the user credential on to other

components. The principle of “Compartmentalization” and others state that every

component should be secure on its own and that different layers of security

should be implemented.

The principle “Use secure defaults” is wrong because software products are

often not secure by default. Generally it is always better to de-install components

and services which are not used to provide fewer surfaces for attack.

There will never be a perfect list of software security principles. Every

security principles list that was researched has leaks and some principles conflict

with each other. Following the given principles alone will not lead to a 100%

secure web application but many troubles can be avoided. The principles point

out common pitfalls that are made by developers. Software developers should be

aware of those principles to avoid the main issues.

Web Application Security Principles Page 93 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

The most important principle is input validation. Not proper validating the

user input can lead to “Buffer Overflows”, “Cross Site Scripting” vulnerabilities

and “Code Injections”. No other principle has as much momentum to prevent so

many issues at once.

The work shows how to apply regular expressions to prevent invalid

information to be processed by the web application. It is important to validate the

input at the server side. Validating the input only on the client side is not

appropriate.

In addition to the research on vulnerabilities and security principles the

design considerations that have to be made when building enterprise web

applications are figured out. The main elements of a secure design are shown. It

is important to use the correct features of those elements to provide security.

For Intranet web applications that run on Windows environment “Integrated

Windows Authentication” should be used at the web server. The benefits of this

are that the password is not transferred over the wire and the Intranet users to do

not need to enter their credentials again for different web applications.

Web Application Security Principles Page 94 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

People do not need to remember different username/password

combinations. This leads to more secure Intranet solutions.

The main drawback of “Integrated Windows Authentication” is that it can

only be used with Internet Information Services and Internet Explorer. But in the

Intranet the enterprise can roll out these systems if not already present.

To provide integrity and privacy, digital certificates should be used in web

applications where appropriate.

Finally the work shows that the used programming language has impact to

the security of the product. The work shows that C/C++ have library functions

which are insecure and should not be used at all. Applications written in C/C++,

that use these functions (e.g. strcpy or sprintf) are in most cases not aware of

buffer overflows. Therefore C/C++ should not be used in the first place.

For applications that implement business processes, languages like C# or

Java are a better choice than C/C++ because they provide a runtime environment

that handles memory management.

Web Application Security Principles Page 95 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

9 CRITICAL EVALUATION

This chapter analyses the work in a critical way and reflects strengths and

weaknesses of it.

The work is based on an extensive literature research and software security

principles are defined. In addition sample applications which are easy to

understand are implemented to demonstrate the main security vulnerabilities that

exist in web applications.

The project focuses on the vulnerabilities and how they can be prevented by

applying the researched security principles. The design elements of a web based

enterprise solution are defined. The work does not concentrate on this subject as

extensive as on the security principles.

The project concentrates on Microsoft technologies but the researched

issues and principles can be adapted to other systems easily - for instance using

Regular Expressions to validate input. The buffer overflow example is written in C

under FreeBSD which gives the work also a UNIX perspective.

Web Application Security Principles Page 96 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

The distinction between software security and security in general is hard to

find. In addition the distinction between software security in general and software

security in web applications is difficult to find.

Discussing this document with different people showed that the security

principle “Use secure defaults” can be misunderstood and should have been

worked out more clearly.

Web Application Security Principles Page 97 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

10 BIBLIOGRAPHY

[Boehm 1988]

Boehm, B. (1988). A spiral model for software development and

enhancement. IEEE Computer.

http://computer.org/computer/co1988/r5061abs.htm

[Berry 2002]

Berry Wayne (2003). Innovations in Internet Information Services Let You

Tightly Guard Secure Data and Server Processes.

http://msdn.microsoft.com/msdnmag/issues/02/09/SecurityinIIS60/default.aspx

[Brown 2000]

Brown K. (2000). Programming Windows Security. Addison-Wesley.

[BS7799]

The BS7799 is not for free. It can be purchased and downloaded at:

https://www.bspsl.com/secure/17799/cvm.cfm

[CERT 2000]

http://computer.org/computer/co1988/r5061abs.htm
http://msdn.microsoft.com/msdnmag/issues/02/09/SecurityinIIS60/default.aspx
https://www.bspsl.com/secure/17799/cvm.cfm
https://www.bspsl.com/secure/17799/cvm.cfm

Web Application Security Principles Page 98 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Carnegie Mellon University. CERT Advisory Malicious HTML Tags

Embedded in Client Web Requests. http://www.cert.org/advisories/CA-

2000-02.html

[CERT 2003]

CERT® and CERT Coordination Center®. Carnegie Mellon University.

CERT/CC Statistics 1988-2002. http://www.cert.org/stats/cert_stats.html

[CERT ADV 2002]

CERT® Advisory CA-2002-03 Multiple Vulnerabilities in Many

Implementations of the Simple Network Management Protocol (SNMP).

Carnegie Mellon University. http://www.cert.org/advisories/CA-2002-03.html

[CERT ADV 2003]

CERT® Advisory CA-2003-04 MS-SQL Server Worm. Carnegie Mellon

University. http://www.cert.org/advisories/CA-2003-04.html

http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/stats/cert_stats.html
http://www.cert.org/advisories/CA-2002-03.html
http://www.cert.org/advisories/CA-2003-04.html

Web Application Security Principles Page 99 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[Gates 2002]

Gates B. (2002), Trustworthy Computing

http://www.microsoft.com/mscorp/execmail/2002/07-18twc-print.asp

[Hanson, van Velzen, Hittel, Roculan 2002]

Security Focus ARIS Top Ten 2001

Threats – Patches and Recommendations to Protect Your Enterprise

http://www.securityfocus.com/corporate/research/top10attacks_2001.pdf

[Howard, LeBlanc 2001]

M. Howard, D. LeBlanc (2001). Writing Secure Code, Practical strategies

and proven techniques for building secure applications in a networked

world. Microsoft Press.

[Howard, Levy, Waymire 2000]

M. Howard, M. Levy, R. Waymire (2000). Designing Secure Web-Based

Applications for Microsoft Windows 2000. Discover how to build secure

Web-based solutions with Microsoft Windows 2000, Internet Explorer,

Internet Information Services, SQL Server, and COM+. Microsoft Press.

http://www.microsoft.com/mscorp/execmail/2002/07-18twc-print.asp
http://www.securityfocus.com/corporate/research/top10attacks_2001.pdf

Web Application Security Principles Page 100 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[Jones, Malcolm, Mackman, Jezierski 2002]

K. Jones, G. Malcom, A. Mackman, E. Jezierski (2002). Exception

Management Application Block Overview. Microsoft Corporation.

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnbda/html/emab-rm.asp

[Meier, Mackman, Vasireddy, Dunner 2002]

J.D. Meier, A. Mackman, M. Dunner, S. Vasireddy (2002). Microsoft

Corporation. Building Secure ASP.NET Applications. SecNet.pdf. Internet

Download.

http://www.microsoft.com/downloads/release.asp?ReleaseID=44047

[MS00-078]

Security Bulletin MS00-078 (2000).

Patch Available for 'Web Server Folder Traversal' Vulnerability.

http://www.microsoft.com/technet/security/bulletin/ms00-057.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp
http://www.microsoft.com/downloads/release.asp?ReleaseID=44047
http://www.microsoft.com/technet/security/bulletin/ms00-057.asp

Web Application Security Principles Page 101 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[MSF 2002]

Microsoft Solution Framework

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutio

ns/tandp/innsol/msfrl/default.asp

[OASIS 2002]

OASIS NEWS Article (2002)

http://www.oasis-open.org/committees/wss/documents/WSS-Core-09-0126.pdf

[OASIS 2003]

P: Hallam-Baker (VeriSign), C. Kaler (Microsoft), R. Monzillo (Sun), A.

Nadalin (IBM) (2003)

The most recent draft during working on this document was:

http://www.oasis-open.org/news/oasis_news_07_23_02.php

The complete index of drafts can be found:

http://www.oasis-open.org/committees/download.php/1204/doc-index.html

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/tandp/innsol/msfrl/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/tandp/innsol/msfrl/default.asp
http://www.oasis-open.org/committees/wss/documents/WSS-Core-09-0126.pdf
http://www.oasis-open.org/news/oasis_news_07_23_02.php
http://www.oasis-open.org/committees/download.php/1204/doc-index.html

Web Application Security Principles Page 102 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[OWASP GUIDE 2002]

Curphey M., Endler D., Hau W., Taylor S., Smith T., Russel L., McKenna

G., Parke R., McLaughlin K., Tranter N., Klien A., Groves D., By-Gad I.,

Huseby S., Eizner M., McNamara R. (2002). A Guide to Building Secure

Web Applications.

http://unc.dl.sourceforge.net/sourceforge/owasp/OWASPGuideV1.1.1.pdf

[OWASP PLAN 2003]

The Open Web Application Security Project Plan for 2003. (2003).

http://www.owasp.org

[Pfleeger 2001]

Pfleeger; S. L. (2001). Software Engineering – Theory and Practice, 2nd

Edition. Prentice-Hall, Inc.

[RFC 1321]

Rivest R., MIT Laboratory for Computer Science and RSA Data Security,

Inc. (1992). The MD5 Message-Digest Algorithm. Network Working Group.

http://www.ietf.org/rfc/rfc1321.txt

http://unc.dl.sourceforge.net/sourceforge/owasp/OWASPGuideV1.1.1.pdf
http://www.owasp.org/
http://www.ietf.org/rfc/rfc1321.txt

Web Application Security Principles Page 103 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[RFC 1945]

T. Berners-Lee, R. Fielding, H. Frystyk (1996). Hypertext Transfer Protocol -

- HTTP/1.0. Network Working Group.

http://www.ietf.org/rfc/rfc1945.txt

[RFC 2068]

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee (1997).

Hypertext Transfer Protocol -- HTTP/1.1. Network Working Group.

http://www.ietf.org/rfc/rfc2068.txt

[RFC 2518]

Y. Goland, E. Whitehead, A. Faizi, S. Carter, D. Jensen (1999). HTTP

Extensions for Distributed Authoring – WEBDAV. Network Working Group.

http://www.ietf.org/rfc/rfc2518.txt

[Romanosky 2002]

Romanosky, S (4th, June 2002). Enterprise Security Patterns

http://www.romanosky.net/papers/securitypatterns/EnterpriseSecurityPatterns.pdf

http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc2518.txt
http://www.romanosky.net/papers/securitypatterns/EnterpriseSecurityPatterns.pdf

Web Application Security Principles Page 104 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[Saltzer 1975]

J. H. Saltzer, M. D. Schroeder The protection of information in computer

systems. IEEE.

http://denali.cs.washington.edu/relwork/papers/saltzer.html

[Samtani 2002]

Samtani, G. (2002). Top 10 Web service security requirements

http://builder.com.com/article.jhtml?id=u00320020610GXS01.htm

[SECURITYFOCUS 2002]

Top Ten Vulnerabilities of 1st Quarter 2002´

http://www.securityfocus.com/corporate/research/top10vulns_q1_2002.shtml

[Sommerville 2001]

Sommerville, I. (2001). Software Engineering, 6th Edition. Addison-Wesley

http://denali.cs.washington.edu/relwork/papers/saltzer.html
http://builder.com.com/article.jhtml?id=u00320020610GXS01.htm
http://www.securityfocus.com/corporate/research/top10vulns_q1_2002.shtml

Web Application Security Principles Page 105 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[Spafford 1991]

Spafford E. H. (1991). The Internet Worm Incident. Technical Report CSD-

TR-933. Department of Computer Sciences, Purdue University.

http://www.cerias.purdue.edu/homes/spaf/tech-reps/933.pdf

[Spitzner 2002]

Spitzner, L. (2002). Know your enemy. Revealing the security tools, tactics

and motives of the blackhat community. Addison Wesley

[SYMANTEC 2000]

http://securityresponse1.symantec.com/sarc/sarc.nsf/html/w32.nimda.a@mm.html

[Tzu 500 BC]

Tzu S., J. Clavell. The Art of War. 500 BC (1983). Delacorte Press.

[Viega, McGraw 2002]

J. Viega, G. McGraw (2002). Building Secure Software – How to avoid

security problems the right way. Addision-Wesley.

http://www.cerias.purdue.edu/homes/spaf/tech-reps/933.pdf
http://securityresponse1.symantec.com/sarc/sarc.nsf/html/w32.nimda.e@mm.html

Web Application Security Principles Page 106 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

[W3CWG 2002]

http://www.w3.org/2002/ws/arch/2/06/wd-wsa-arch-

20020605.html#IDATEYE0B

[Wong 2000]

Wong, C. (2000), HTTP Pocket Reference. O’Reilly & Associates, Inc.

http://www.w3.org/2002/ws/arch/2/06/wd-wsa-arch-20020605.html#IDATEYE0B
http://www.w3.org/2002/ws/arch/2/06/wd-wsa-arch-20020605.html#IDATEYE0B

Web Application Security Principles Page 107 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

11 APPENDIX

This chapter includes Final Year Project Proposal, Meeting Protocols,

Project Plan and the Interim Report.

Web Application Security Principles Page 108 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

11.1 Proposal

Web Application Security Principles Page 109 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

11.2 Meeting Protocols

Web Application Security Principles Page 110 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Web Application Security Principles Page 111 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Web Application Security Principles Page 112 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Web Application Security Principles Page 113 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Web Application Security Principles Page 114 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Web Application Security Principles Page 115 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Web Application Security Principles Page 116 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

Web Application Security Principles Page 117 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

11.3 Project Plan

Web Application Security Principles Page 119 of 119 Johann Rehberger

Designing Secure Web Based Enterprise Solutions University of Derby in Austria

11.4 Interim Report

On the next pages the Interim Report is attached. It is not included into this

document electronically because it has been handed in as an own document in

December 2002.

string

hashPwd =

FormsAuth

enticatio

n.HashPas

swordForS

toringInC

onfigFile

(myPasswo

rd,"md5")

;

SqlComman

d com =

new

SqlComman

d("usp_Ge

tStockPri

ce",con);

com.Comma

ndType =

CommandTy

pe.Stored

Procedure

;

SqlParame

ter

paramStoc

k =

com.Param

eters.Add

("@Stock"

,SqlDbTyp

e.NVarCha

r, 30);

paramUser

name.Valu

e =

txtStock.

Text

com.Execu

teNonQuer

y();

